Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655654

RESUMO

Foxg1 masters telencephalic development via a pleiotropic control over its progression. Expressed within the central nervous system (CNS), L1 retrotransposons are implicated in progression of its histogenesis and tuning of its genomic plasticity. Foxg1 represses gene transcription, and L1 elements share putative Foxg1 binding motifs, suggesting the former might limit telencephalic expression (and activity) of the latter. We tested such prediction, in vivo as well as in engineered primary neural cultures, by loss- and gain-of-function approaches. We showed that Foxg1-dependent, transcriptional L1 repression specifically occurs in neopallial neuronogenic progenitors and post-mitotic neurons, where it is supported by specific changes in the L1 epigenetic landscape. Unexpectedly, we discovered that Foxg1 physically interacts with L1-mRNA and positively regulates neonatal neopallium L1-DNA content, antagonizing the retrotranscription-suppressing activity exerted by Mov10 and Ddx39a helicases. To the best of our knowledge, Foxg1 represents the first CNS patterning gene acting as a bimodal retrotransposon modulator, limiting transcription of L1 elements and promoting their amplification, within a specific domain of the developing mouse brain.

2.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163265

RESUMO

FOXG1 is an ancient transcription factor gene mastering telencephalic development. A number of distinct structural FOXG1 mutations lead to the "FOXG1 syndrome", a complex and heterogeneous neuropathological entity, for which no cure is presently available. Reconstruction of primary neurodevelopmental/physiological anomalies evoked by these mutations is an obvious pre-requisite for future, precision therapy of such syndrome. Here, as a proof-of-principle, we functionally scored three FOXG1 neuropathogenic alleles, FOXG1G224S, FOXG1W308X, and FOXG1N232S, against their healthy counterpart. Specifically, we delivered transgenes encoding for them to dedicated preparations of murine pallial precursors and quantified their impact on selected neurodevelopmental and physiological processes mastered by Foxg1: pallial stem cell fate choice, proliferation of neural committed progenitors, neuronal architecture, neuronal activity, and their molecular correlates. Briefly, we found that FOXG1G224S and FOXG1W308X generally performed as a gain- and a loss-of-function-allele, respectively, while FOXG1N232S acted as a mild loss-of-function-allele or phenocopied FOXG1WT. These results provide valuable hints about processes misregulated in patients heterozygous for these mutations, to be re-addressed more stringently in patient iPSC-derivative neuro-organoids. Moreover, they suggest that murine pallial cultures may be employed for fast multidimensional profiling of novel, human neuropathogenic FOXG1 alleles, namely a step propedeutic to timely delivery of therapeutic precision treatments.


Assuntos
Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Alelos , Animais , Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Expressão Gênica/genética , Frequência do Gene/genética , Humanos , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Neurônios/metabolismo , Cultura Primária de Células , Estudo de Prova de Conceito
3.
Bio Protoc ; 7(18): e2551, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34541197

RESUMO

This protocol aims at standardizing the procedure to obtain primary cultures of hippocampal and cerebrocortical neurons for in vitro experiments. Cultures should be prepared from cells isolated during embryonic development when neuronal precursor cells are not yet fully differentiated. This helps increasing the quality and quantity of cells, while offering minimal cell death that often occurs during dissociation of differentiated neurons. Cells plated under the appropriate conditions, either in Petri-dishes or in multi-well plates, will develop and establish synaptic contacts over time since the neuronal culture medium provides the nutrients and trophic factors required for differentiation. In this protocol we describe the methodology for the preparation of both cortical and hippocampal neuronal cultures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...